SPASSInput Syntax
Version 1.5

Christoph Weidenbach
Max-Planck-Institut fur Informatik
Stuhlsatzenhausweg 85
66123 Saarbriicken
wei denb@mi - sb. npg. de

Abstract

This document introduces thep&ssinput syntax. It came out of the DFG syntax format that wasith to be a
format that can easily be parsed such that it forms a comp®bgtween the needs of the different groups.

1 Introduction

The language proposed in the following is intended to be ansomexchange format for logic problem settings. It is
thought to be a format that can easily be parsed such thaisfa compromise between the needs of the different groups.
Therefore, it is keptis simple as possihlén particular, the grammar of the language can be easilggased by some
automatic parser-generator.

In any case it will be necessary to provide tools that tramsfiles from the present syntax into other standard formats
(e.g., Otter [6] or TPTP [9]) and vice versa. Currently we @aertly) transform Otter input files to DFG-Syntax files and
vice versa.

2 Notation

For the grammar defining the syntax, terminals are alway®tlinéd while non-terminals and meta-symbols are not.
Braces come in different variants and have the followingmiresa

{
{
{

} optional
+* arbitrarily often
1}t atleast once

3 Problems

The unit of information we can describe are problems. A probmay not only contain formulae or clauses but also
information on parameter settings.

problem := beginproblen(identifier).
description
| ogi cal part
{settings}*
end_pr obl em

Note that the description part as well as the logical parheaadatory.

4 Descriptions

The description part should help to understand what thel@nolis about. In particular, the logic part is mandatory, if
non-standard quantifiers or operators are used.

description := 1|ist_of _descriptions.
nane({* text *})_.
author ({* text *})
{version({* text *}).}
{logic({* text *}).}
status(l ogstate).
description({* text *}).
{date({* text *}) }
end_of |ist.

logstate := satisfiable | unsatisfiable | unknown

5 Thelogical Parts

Any non-predefined signature symbol used in a problem hae ttefined in the declaration part. Then the logical part
may provide a formulation of the problem by formulae as welbsg some clause normal forms. In addition, proofs for
the conjecture stated by the formulae (clauses) may beioedta

| ogi cal part == {synbol list}
{declarationlist}
{formul alist}*
{cl auseli st }*
{proof Iist}*

As mentioned before, non-predefined signature symbolstiodve declared in advance. Since the current scope of the
syntax only covers first-order logic, we are concerned wittcfion and predicate symbols. The usual first-order opesat
and quantifiers are predefined. In addition, there is a urégadol for equality, see below.

synbol list == 1ist_of _synbols.
{functions[funsym | (funsymarity)
{, funsym| (funsymarity)}*] }
{predi cates[pred_sym| (predsymarity)
{, predsym| (predsymari ty_)_} 1.}
{sorts[sort_sym {, sort sym*]. }
end_of |ist.

All declared symbols have to be different from each otherfameh all terminal and predefined symbols.
We support a rich sort language that may be introduced by lard¢ion part. We do not allow free variables in term
declarations, but polymorphic sorts.

decl aration.i st

decl aration
gen_decl
func_li st
subsort _decl
t er mdecl
pred_decl
sort_sym
pred_sym
fun_sym

I i st_of _decl arati ons.

{decl aration}*

end_of _|ist.

subsort decl | termdecl | pred.decl | gen_decl
sort sort_sym {freely} generated by func.list.
[funsym {, fun.symp*]

subsort(sort _symsort_symn).
forall(termlist,term. | term

predi cat e(predsym{, sort _sym*).

i dentifier B o

identifier

identifier

Concerning the term declarations, we assume that all tammneriml i st are variables or expressions of the form

sort_syn(vari abl e).

Now there are two types of formulae: Axiom formulae and conjee formulae. If the status of the problem (see
below) states “unsatisfiable” it refers to the clause noffiiah resulting from the conjunction of all axiom formulaedan
the negation of the disjunction of all conjecture formul@d.course, “satisfiable” means that the overall formula has a

model.

formul ali st

origintype
| abel

|'i st _of formul ae(origintype).
{fornul a({termi{, | abel }).}*
end_of _|ist.

axi ons | conjectures
identifier

We assume that all formulae are closed, so we do not allowfgables inside a formula expression.

Quantifiers always have two arguments: A term list and théosatulae. The term list is assumed to be a variable
list (or a list of variables annotated with a sort) for the aldfirst-order quantifiers, however, one could easily imagin
non-classical quantifiers, where “quantification” ovell teems makes sense.

term

termli st
guant _sym
synbol

quant syn(termlist,term) | symbol |
symbol (term{, term*)
[term{, term*]

forall | exists | identifier
equal | true | false | or | and | not | inplies |
implied | equiv | identifier

We support disjunctive normal form as well as clause normahf Even clauses have to be written as their corre-
sponding formulae, in particular all variables have to bertzbby the leading quantifier. Our experience with problems
stated by a set of clauses shows that this helps to detect #iagvsif accidentally it was forgotten to declare some tamis
that would then be considered as a variable. Since freeblesiare not allowed, this case is detected in our syntax.

cl auseli st

cl ause_type

cnf _cl ause

dnf _cl ause

cnf _cl ause_body
dnf _cl ause_body

|'i st _of clauses(origintype,clausetype).

{cl ause({cnf cl ause | dnf_clause}{, |abel }).}*

end_of _|ist.

cnf [dnf

forall (termlist, cnf_clausebody) | cnf_cl ause_body
exi sts(termlist, dnf _cl ause_body) | dnf_cl ause_body
or(term, term*)

and(term{, term*)

In case oftnf _cl ause_body anddnf _cl ause_body we assume all subterms generatedtfer mto be literals.
The alphabet allowed to compose identifiers is restrictdetters, digits and the underscore symbol.

begi n_pr obl en(Pel | eti er57).

i st_of descriptions.

name({* Pelletier’s ProblemNo. 57 *}).

aut hor ({* Chri stoph Wi denbach *}).

status(unsatisfiable).

description({* Problemtaken in revised formfromthe "Pelletier Collection",
Journal of Autonmated Reasoning, Vol. 2, No. 2, pages 191-216 *}).

end_of Iist.

list_of synbol s.

functions[(f,2), (a,0), (b,0), (c,0)].
predicates[(F, 2)].

end_of _| i st.

I'ist_of fornul ae(axi ons).

formula(F(f(a,b),f(b,c))).

formula(F(f(b,c),f(a,c))).

formula(forall ([U V,W,inplies(and(F(U V), F(V,W),FUW))).
end_of _| i st.

Iist_of fornul ae(conjectures).
formula(F(f(a,b),f(a,c))).
end_of _| i st.

end_probl em

Figure 1: Pelletier’'s Problem No. 57

identifier == {letter | digit | special synmbol }*
letter = az | AZ
arity == -1 | nunber
nunber == {digit}*
digit «= 0] 1]2]3|4]15]6]7]8]29

speci al synbol

5.1 Examples

We start with a complete description of Pelletier’s [7] deh No. 57 that can be found in Figure 1. The syntax for the
description part is explained in Section 4.
Our second example, Figure 2, uses the language featunadguidor the declaration of sorts.

6 Proofs

We also define a first, simple proof format. Basically a pramfsists of a sequence of “simple” steps. The semantics of
step is that the introduced formula is a logical consequehtiee formulae pointed to by the list of parents.

We already have implemented some scripts that can be usedamatically check resolution proofs. Here, the idea
is to be able to check complicated, tedious, long proofsddunsome prover automatically by using a different prover.

begi n_probl em(Sorts).

i st_of descriptions.

nane({* Sorts and Plus *}).

aut hor ({* Chri stoph Wi denbach *}).
status(satisfiable).

description({* Defines plus over successor and zero.

end_of i st.

list_of synmbol s.
functions|[plus,s,zero].
sorts[even, nat].

end_of _list.

l'i st _of decl arati ons.

subsort (even, nat).

even(zero).

forall ([nat(x)],nat(s(x))).

forall ([nat(x),nat(y)],nat(plus(x,y))).
forall ([even(x),even(y)], even(plus(x,y))).
forall ([even(x)],even(s(s(x)))).

forall ([nat(y)],even(plus(y,y))).

end_of |ist.

I i st_of fornul ae(axi ons).
formula(forall ([nat(y)], equal (plus(y, zero),y))).

1.

formul a(forall ([nat(y),nat(z)],equal (plus(y,s(z)),s(plus(y,z))))).

end_of i st.

end_probl em

Figure 2: Example with Sort Declarations

proof list == 1ist_of _proof {(proof _type{, assoclist})}.
{step(reference,result, rul e.appl, parent_list{, assoclist}).}*

end_of |ist.
reference == term| identifier | user_reference
result = term| user_result
rul e_appl = term| identifier | user_rule_appl
parent list == [parent{, parent}]
par ent = term| identifier | user_parent
assoc. i st = [key:val ue{, key: val ue}*]
key == term]| identifier | user _key
value == term]| identifier | user_value
proof type := identifier | user_proof_type

All user _non-terminals of the grammar must be compatible with theaaly defined non-terminals. For example, a
user _key must be & er mor ani dentifi er.

6.1 SPASSProofs

Here is the instantiation of the general proof schema forS&atyle proofs that are supported by our proof checker.

user _reference := nunber
user _resul t = cnf _cl ause
user ruleappl == CGR| SpL | SpR| EqF | Rew | Oov | EnS5 | SoR | EgR
|
MPm| SPm| OPm| SHy | OHy | URR| Fac | Spt | Inp
|
Con | RRE| SSi | AR | UnC | Ter
user parent := nunber
user _proof _t ype = SPASS
user key = splitlevel
user _val ue := nunber

The association list as well as the key/value list is not uséglure 3 shows an example for a DFG-problem together
with a SPASS style resolution proof. The rule applicatiognidfiers name the SPASS inference/simplification/reducti
rules general resolutioréR), superposition left$pL), superposition right3pR), equality factoring EqF), rewriting
(Rew), obvious reduction@yv) and clause reductiorC(R). Clauses are labelled with numbers and references in§ide o
proof steps refer to these numbers.

7 Settings

The idea to include settings into the problem file format isniable people to reproduce specific proofs that depend on
particular input settings of the respective prover.

settings == |list of general settings {settingentry}*t endof |ist.
I
li st of settings(settinglabel). {* text *} end.of |ist.
settingentry == hypothesis[label {, |abel}*].
settinglabel == KV | LEM| OTTER | PROTEIN | SATURATE | 3TAP |
SETHEO | SPASS

The labels name the following systems: KIV [8], LEM [4], OTRE6], PROTEIN [1], SATURATE [3],31’4P [2],
SETHEO [5], SPASS [10]. For example, to specify the preceddar SPASS and to direct SPASS to print a proof, we
include the following settings:

begi n_pr obl en(Pr oof Denp) .

Iist_of _descriptions.

nane(*test.dfg*).

aut hor (* SPASS*) .

status(unsatisfiable).

description(*File generated by SPASS containing a proof.*).
end_of _| i st.

list_of _synbols.
functions[(skf1l, 1)].
predi cates[(P, 2)].
end_of _| i st.

i st_of clauses(conjectures, cnf).

clause(forall ([U,or(P(U,skf1(U))),1).
clause(forall ([U, or(not (P(skf1(U),V)))), 2).

clause(forall ([V,U W, or(equal (U, V), equal (V, W, equal (WU))), 3).
end_of _|i st.

I'ist_of proof (SPASS).
step(10,forall ([V,U W, or(equal (U, V), equal (V,skf1(W),P(WU))),SpR [3,1]).
step(36,forall ([V,U, or(equal (U, V), equal (V, skf1(skf1(U))))),CR[10,2]).
step(43,forall ([V, U], or(equal (U, V), P(skf1(U,V))), SpR [36,1]).

step(58,forall ([V,U],or(not(P(U, skf1(V))),equal (V,V))), SpL,[36,2]).
step(86,forall ([V, U, or(equal (U, skf1(V)), equal (V,skf1(U)))), GeR [43,58]).
step(87,forall ([U], or(not(equal (U, U)), equal (skf1(U),U))), EqF, [86, 86]) .
step(124,forall ([U], or(equal (skf1(U),U))), Cov,[87]).

step(129,forall ([U,or(P(U, U))), Rew, [124, 1]).

step(130,forall ([U,or(not(P(U,U)))), Rew, [124, 2]).

step(213,or(false),dR [129,130]).

end_of | i st.

end_probl em

Figure 3: A SPASS Style Resolution Proof

I'ist_of settings(SPASS).
{x*

set fl ag(DocProof, 1).

set precedence(a, b,c,f,F).
*}

end_of | i st.

8 Miscellaneous

8.1 Comments

After the %symbol the rest of line is ignored. The comment symHdlsand* } are only allowed at the places defined
above. T

8.2 Conventions
We suggest the following conventions concerning suffixdil@hames:

.df g For general problem files, including formulae, clausespfeat the same time.
. frm For problem files containing at least lists of formulae.

.cnf For problem files containing at least lists of clauses in goajive normal form.
.dnf For problem files containing at least lists of clauses inugisfive normal form.
. prf For problem files containing at least lists of proofs.

Acknowledgements

We would like to thank all members of the German “Schwerpiréduktion” group who contributed to previous versions
of this paper. Special thanks to Michael Christen, Enno Kéerdreas Nonnengart and Dalibor Topi¢ who proof-read
several versions of this paper.

References

[1] Peter Baumgartner and Ulrich Furbach. ProteinprAver with atheoryextensioninterface. In A. Bundy, editor,
12th International Conference on Automated Deduction,EAIR, volume 814 ofLNAI, pages 769—773. Springer,
1994. Available in the WWW, URLht t p: / / www. uni - kobl enz. de/ ag- ki / Syst ens/ PROTEI N/ .

[2] Bernhard Beckert, Reiner Hahnle, Peter Oel, and M&tilzmann. The tableau-based theorem prover 3tap, version
4.0. In M.A. McRobbie and J.K. Slaney, editot8th International Conference on Automated Deduction, EAL3,
volume 1104 oLNCS pages 303—-307. Springer, 1996.

[3] Harald Ganzinger and Robert Nieuwenhuis. The saturatstesn 1994, http://www.mpi-
sh.mpg.de/SATURATE/Saturate.html, 1994.

[4] Birgit Heinz. Anti-Unifikation modulo Gleichungstheorie und deren Angierg zur Lemmagenerierun®isserta-
tion, TU Berlin, Dec 1995.

[5] Reinhold Letz, Johann Schumann, S. Bayerl, and Wolfdgibgl. Setheo: A high-performance theorem prover.
Journal of Automated Reasonir(2):183-212, 1992.

[6] William McCune. Otter 3.0 reference manual and guidehfgcal Report ANL-94/6, Argonne National Laboratory,
1994,

[7] Francis Jeffry Pelletier. Seventy-five problems fottiteg automatic theorem proversournal of Automated Rea-
soning 2(2):191-216, 1986. Erratdournal of Automated Reasoning(2):235-236,1988.

[8] Wolfgang Reif. The kiv-approach to software verificatidn Manfred Broy and Stefan Jahnichen, edit&iGRSO:

9]

[10]

Methods, Languages, and Tools for the Construction of @oi8®ftware — Final Reportvolume 1009 olLNCS
pages 339—-368. Springer, 1995.

Geoff Sutcliffe, Christian B. Suttner, and Theodor Yeriz®e The TPTP problem library. In Alan Bundy, editor,
Twelfth International Conference on Automated DeductidADE-12 volume 814 ofLecture Notes in Artificial
Intelligence, LNAlpages 252—-266, Nancy, France, June 1994. Springer.

Christoph Weidenbach, Uwe Brahm, Thomas Hillenbraadno Keen, Christian Theobald, and Dalibor Topic.
SPASS version 2.0. In Andrei Voronkov, edit@oceedings of the 18th International Conference on Autedha

Deduction (CADE-18)volume 2392 otf_ecture Notes in Atrtificial Intelligen¢@pages 275-279, Kopenhagen, Den-
mark, 2002. Springer.

